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ABSTRACT

Quantitative useof satellite-derivedmapsof monthly rainfall requiressomemea-

sureof the accuracy of the satellite estimates. The rainfall estimate for a given map

grid box is subject to both remote-sensingerror and, in the caseof low-orbiting satel-

lites, sampling error due to the limited number of observationsof the grid box provided

by the satellite. A simple model of rain behavior predicts that rms random error in

grid-box averagesshould dependin a simple way on the local averagerain rate, and

the predicted behavior has beenseenin simulations using surfacerain-gaugeand radar

data. This relationship wasexaminedusing satellite SSM/I data obtained over the west-

ern equatorial Pacific during TOGA COARE. RMS error inferred directly from SSM/I

rainfall estimateswas found to be larger than predicted from surfacedata, and to de-

pend lesson local rain rate than waspredicted. Preliminary examination of TRMM mi-

crowaveestimatesshowsbetter agreementwith surfacedata. A simple method of esti-

mating rms error in satellite rainfall estimatesis suggested,basedon quantities that can

be directly computed from the satellite data.
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1. Introduction

Satellite data are now regularly used to producegridded mapsof rainfall

averagedover time intervals ranging from hours to many months. It has not beeneasy,

however,to provide accompanyingquantitative estimatesof the accuraciesof the grid-

point averages.This is in part becauseremote-sensingtechniquesdo not yet provide

sufficient information to allow unambiguousconversionof measurementsinto rain-rate

valuesfor the observedarea, and the distribution of errors introduced in the conversion

dependson the observedsituation in ways that are not alwaysknown. The problem is

exacerbatedby the highly intermittent character of rain, which makesaveragesof rain

data noisy and comparison of remote-sensingresults with measurementsmade on the

ground difficult.

The Tropical Rainfall MeasuringMission (TRMM) satellite was launchedin 1997.

Descriptions of TRMM are given by Simpsonet al. (1988,1996)and Kummerow et

al. (1998). One of the primary goalsof the mission is to provide rain data sufficiently

accurate that TRMM satellite products can serveasa kind of transfer standard to

calibrate rain estimates from other satellite systemsand thereby improve the overall

accuracy of global rain maps. To help reachthis goal, the satellite carries several

instruments on board including a precipitation radar and a passivemicrowavesensor,

the lattei" having higher resolution than most satellite-borne microwaveinstruments.

An important componentof the effort towards reachingthis goal is developing

quantitative estimatesof the accuracyof the gridded products of TRMM. A number

of different approachesto this are being tried, including developmentof models for

the error intrinsic to the remote sensingmethods themselves;comparisonof satellite

products to ground-basedmeasurementsfrom rain-gaugearrays, radar sites, and aircraft

measurementsduring field campaigns;and comparisonwith other satellite observations.

Although much can be learned about sourcesof error in the TRMM rain

estimates from examining individual overlapping coincident snapshotsof rain events
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taken by various TRMM instruments and by other satellites and ground-based

observationsystems,muchcan also be learnedfrom comparisonsamong averages of

satellite data and ground-based data. As long as the averages of the satelhte estimates

and ground-based or other-satellite estimates are taken from time intervals and spatial

locations which are believed to have similar statistics, such averages allow enormously

more data to be used in the comparisons than can be assembled from coincident

observations. Comparisons of averages of data reveal biases in rain estimates. Such

biases may be small compared to discrepancies found in point-by-point comparisons

of coincident observations, yet knowledge of these biases is important when TRMM

data are used as a transfer standard, and especially so when the data are used for

climatological studies.

One of the commonest methods of comparing satellite estimates of rainfall to

ground-based observations and to other satellite estimates is to test the agreement

of averages over a spatial domain, such as a grid box on a map, averaged over a

sufficiently long time period that the averages are stable enough for the comparison

to be informative. Even if the remote-sensing techniques are perfectly accurate, such

averages will contain sampling error because the systems are not measuring rainfall

everywhere in the area at every moment. Rain gauges, for example, measure more or

less continuously in time but cover very little of the area, whereas radar views irregular

shaped volumes of the atmosphere at frequent but non-continuous intervals of time,

and satellite observations are till more widely spaced in time. While averages from two

different systems may disagree because of inherent errors in the measurement methods,

they will almost certainly disagree because they contain different sampling errors.

Mathematically, comparison of two grid-box averages can be formulated like this:

Suppose a system XmTRMM, perhaps gives an estimate Rx for the average rainfall

in a grid box over some time interval of the order of a month or so, and that system
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Y--another satellite, perhaps, or a ground-based system--gives an estimate Rz for the

same area and time. Each system makes an (unknown) error

e_ - R_ - _R; a = X, Y. (1.1)

A portion of the error ea is due to possible algorithmic and instrumental errors in

estimating rain rate when it is observed, or to differences in the mean rain ralle observed

by the two systems due to spatial or temporal inhomogeneity in the rain statistics,

such as spatial variation in the mean rain rate, or a diurnal cycle. The rest is due to

inadequate sampling. To compare the estimates of the two systems to see if one is

biased relative to the other, one examines whether the difference .Rx - Ry is bigger

than can be explained by chance. A straightforward approach is typically to estimate

the mean squared difference

= ((Rx - Rr)

= ((Ex - 2)

= O'X 2 "+"O'y 2 -- 2(8XEy) , (1.2)

where aa2 -- (¢2a>, and to estimate the bias as Rx - Ry 4- 2a. (The limits 4-2cr would be

appropriate if the difference Rx - Ry is normally distributed and 95% confidence limits

are wanted, if [Rx - Ry[ > 2cr, one is fairly sure that there is a nonzero bias present.

See, for example, Taylor (1997) for a discussion of such approaches.)

The use 0fa this way to make quantitative inferences about the bias, however,

assumes that the statistics of the differences Rx - Ry are normally distributed,

which cannot be taken for granted. Even when the assumption of normality is not

completely justified, though, the above approach to inferring a bias is likely to be a good

approximation to the correct one. A more satisfactory approach to this problem might

be to collect enough data from the two systems so that the statistical distribution of the

difference Rx - Ry itself could be established. Having obtained it, one could empirically

determine confidence limits for the bias (Rx - Ry), where the angular brackets indicate"
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an averageover an ensembleof data.setssimilar in nature to what hasbeencollected.

An approachlike this would probably benefit from employing resamplingtechniques.

SeeZwiers (1990)and Wilks (1997), however,for important caveatsconcerningthese

methods.

The moreconventional approachbasedon (1.2) has the advantagethat it is

easily automated and easyto apply to disparate regionsof the world, time periods, and

rainfall-estimation methods. Publishedresultsof studies doneby variousgroups are

often already cast in this format so that comparisonscanbe quickly made. It should

also be noted that the error estimatescras definedaboveareexactly what axeneeded

if a satellite map of rainfall is to be comparedwith climate models,whoseoutput is

generally in the form of grid-box averages.If the satellite map of R is assumed to be

accurate to ::t=2crX for some grid box, and the climate model forecast to be accurate

to =t=2O'y (due to predictability limits), the satellite map value and the model forecast

should agree to within =t:2a computed from Eq. (1.2).

The purpose of this paper is to explore methods of estimating crz for weekly to

monthly averages of rain estimates obtained from microwave instruments on low earth-
: F _ :

orbiting satellites, incIuding :those on TRMM and the Special Sensor MicroWave/Imagers

(SSM/I) on Defense-Meteorological-Satellite-Program (DMSP) satellites. Because

raindrops interact strongly with microwave radiation, such instruments are believed

to provide some of the best estimates of rain rates observed from satellite platforms.

Sampling error contributes substantially to crx for these satellites because they observe

any spot on the earth only a few times per day at best. It was originally argued (e.g.,

Wilheit 1988, Bell et al. 1990) that "retrieval errors," the errors made in estimating

actual rain rates from microwave measurements, might contribute relatively little to ax

because the large number of fields of view (FOVs) averaged over in forming a monthly

average would tend to produce relatively small net average retrieval error, even if
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individual random retrieval errors were large. Results presentedin this paper appear

not to support this.

The error a x is likely to depend on many aspects of rain in a given region,

such as the amount and types of rainfall, the average synoptic conditions, the season,

sea-surface temperatures, availability of moisture, levels of aerosol contaminants, etc.,

as well as on the sampling and observational characteristics of the satellite and its

instruments. In a previous paper, Bell and Kundu (1996), hereafter abbreviated as

BK96, derived a simple formula expressing the sampling error as a function of the

mean rain rate and an "effective" number of samples. A more general argument for

the same formula was subsequently developed by Bell and Kundu (2000), hereafter

abbreviated BK00. They tested this formula using the sampling characteristics of the

TRMM satellite and the statistical properties of a number of datasets from ground-

based rain-gauge and radar measurements. In this paper, we continue the investigation

by comparing the formula's prediction of the behavior of rms error in monthly averages

obtained from a satellite-derived dataset.

The dataset studied here contains retrieved rain rates over the western tropical

Pacific during the Tropical Ocean Global Atmosphere/Coupled Ocean Atmosphere

Research Experiment (TOGA COARE), during November 1992 to February 1993.

The rain rates are derived from SSM/I data taken from two DMSP satellites that were

orbiting at the time, the F10 and Fll. The algorithm used in the retrievals is similar

to but not so highiy developed as the one presently being used for TRMM. Details will

be given later. It is found that a fairly simple parameterization of the random error

in monthly averages over 2.5 ° x 2.5 ° grid boxes seems to describe the data well, but

that the dependence on the mean rain rate in the grid box is different from what was

predicted by the model and observed using ground-based data as summarized in BK00,

and the error magnitudes are much higher.
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The sourceof this differenceappearsto be the very different responsesof the

satellite microwave instruments and algorithm to the presenceof stratiform rain when

comparedwith the ground-basedmeasurements.This explanation will be discussedin

a separatepaper. Sucha rain-type-dependentresponsehas important implications for

using one satellite estimate to calibrate another, as is sometimesdone in combining

datasetsto produceglobal mapsof rainfall, or in comparing satellite estimates to

ground-validation datasets.

Despite the differencesobservedherein the random error of satellite averages

comparedwith that of ground-basedaverages,the approachcan still be used to

obtain parameterizedestimatesof a X as a function of the average rain rate in a

grid box, and thus dan be used to supply fairly simple descriptions of the confidence

levels to be applied t ° each grid-box value of rain rate generated from the satellite

data. Comparisons of satellite estimates against values obtained from ground-based

instruments can therefore be carried out using Eq. (1.2), provided the sampling error

O-y in the ground-based estimates can be obtained and the covariance term {sxey)

estimated. In many instances the covariance term can probably be neglected, either

because it is actually small or because it will tend to decrease a, so that ignoring it will

mean that a is at worst overestimated and the error bars will therefore be conservatively

estimated.

In the following section we briefly review a model for how sampling error should

depend on rain rate and other factors and how sampling error estimates obtained with

ground-based data compare with the simple model. We describe the SSM/I-derived

dataset from which estimates of the random error in SSM/1 monthly averages are

obtained in section 3, and in section 4 compare the estimates with estimates made from

surface radar taken in tropical oceanic environments. The SSM/I statistics display a

simple power-law dependence on local rain rate, and these power laws are described

in section 5. In section 6 we report some preliminary results on rainfall statistics
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observedby TRMM and compareand contrast them with the results from the SSM/I

observations. Section 7 summarizesour results and givessomeconcluding remarks.

Somestatistical and computational details are provided in an appendix.

2. Review of a simple model for sampling error

A simple theoretical modelpresentedin BK00 suggestshow sampling error might

depend on the rainfall climatology and satellite sampling characteristics for a given

grid box. For the reader's convenienceand to establishnotation we briefly review the

formula and the underlying conceptsand definitions. For the detailed derivations see

BK00.

a. Definitions

We are interested in an estimate of the space-time-averaged rain rate

where

f0 T= (l/T) dtRA(t), (2.1)

RA(t) = (l/A)/A d2xR(x't) (2.2)

is the area-averaged instantaneous rain rate, R(x, t) is the local rain rate at the point

x at time t, T is the averaging period, taken here to be one month, and A is the area

of the grid box. We assume A to be large enough so that the rain rates in neighboring

boxes can be assumed to be statistically uncorrelated to a good approximation.

The satellite in general views a'grid box intermittently and even then sometimes

only partially. Thus the instrument provides an estimate/_, of the rain rate at times

{ti, i = 1,..., n} averaged over an area Ai _< A corresponding to the region of overlap

between the grid box and the instrument swath during the overpass at time ti. The

satellite estimate R of the true monthly average R is obtained as a weighted average of

the individual estimates/_. :

/_ = _1 _ wi/_' (2.3)
n i=l
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with suitably chosenweights wi normalized to

r_

= 1. (2.4)
i=1

(The estimate/_ would be an example of R X in Eq. 1.1.) A convenient way to

obtain/_ directly from the data is t'o average the rain-rate estimates from all the

instrument footprints that fall within the area A over the period T. (If the footprints

are distributed relatively uniformly over the areas Ai then such an average is equivalent

to setting wi <x Ai/A. If the footprints are nonuniformly distributed but the area

average _. has been corrected for this, the same choice for wi is appropriate. It is shown

in BK96 that this choice of weights provides a near-optimal estimate of R for most grid

boxes seen by TRMN[ except those at the highest latitudes.)

The uncertainty in the estimate/_ is measured by the mean squared error

= (2.5)

where the angular brackets denote an average over an ensemble of rain scenarios

consistent with the localrainfallclimatology. In general,as discussed in BK00, a_

contains contributions from both the sampling error arisingfrom intermittentsatellite

coverage and the retrievalerror arisingfrom the errorsin converting the resultsof

measurements into actual rain rates.Ifwe can assume that the retrievalerrorsare

uncorrelated from footprint to footprint,the contribution of these errorsto R tends

to be small (Wilheit 1988; Bell et al.1990),and the totalerror a_ isdominated by

the sampling error component. Ifthe contribution to cr_ from retrievalerrorscan be

neglected, the satelliteestimates _. for each overpass can be treated statisticallyas if

they were exact. In Eq. (2.3)we can then set _. = P_ -- RA,(t._)and compute the

sampling error component using (2.5).We willreturn to these assumptions later.

As we have already mentioned, the sampling errorcan depend on the local

rainfallstatisticsas well as sampling characteristicsof the satellite.A simple model

for thisdependence isbased on the straightforward assumption that variationsin
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the total rainfall amount in an area are primarily due to variations in the number of

independently evolving precipitating systems present within it rather than variations

in the intensity of the individual systems. Such an assumption is present in almost

all statistical treatments of rainfall, and some such assumption can be used to justify

rain algorithms that estimate areal rainfall from areal coverage. The assumption is

dynamically plausible because the convective cores of storms are quickly evolving small-

scale phenomena, limited in their development by local lapse rates and the availability of

moisture. Synoptic-scale lower-level convergence may affect the probability of convective

plumes forming, but once started, they are self-limiting.

Starting from this simple assumption, BK00 obtained the formula

aE -- C(RAS) -1/2 (2.6)

where

S = _ Ai/A (2.7)
i=l

is the "effective" number of full area sweeps of the grid box A by the satellite instru-

ment swaths, and the prefactor C depends only weakly on a variety of rainfall charac-

teristics consistent with a given value of the mean rain rate R, as described below. Ar-

guments for a 1/v_-dependence of relative sampling error on rain rate like that in Eq.

(2.6) were given in BK96, who noted some evidence for it when estimates from simu-

lations with radar data over southern coastal Japan (Oki and Sumi 1994) were plotted

versus R. An extehsive discussion of the dependence of sampling error on rain rate R is

given by Huffman (1997). Quartly et al. (1999) provide a clear review of arguments for

(2.6) and an example of an interesting application of these ideas to a rain climatology

developed with data from the TOPEX/POSEIDON satellite dual-frequency altimeter.

Numerous estimates of rms sampling error have been made in the literature using

simulated satellite sampling of data taken by ground-based measurement systems in a

variety of geographical regions. BK00 examined many of these estimates, and found
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that the dependenceof aE/R on R was predicted quite well by (2.6) in those regions

where data were available in sufficient quantities. In particular, as mentioned above,

results of simulations with radar data over southern coastal Japan by Oki and Sumi

(1994) agree quite well (BK96) with (2.6); and Steiner (1996) obtained error estimates

using simulations with rain-gauge and radar data from Darwin and Melbourne, Florida

and found that he could fit the dependence of error on R with an expression quite close

to (2.6).

b. Model explanation

A simple model that gives the relationship (2.6) can now be described. A more

thorough discussion is given by BK00. The model assumes that rainfall consists of

individual uncorrelated rain events having, on average, area a and duration 2Ta. From

these assumptions they derived the expression

C = (arc)l�2[1 - 2Ta/(T/S)] 1/2 , (2.s)

where rc = Rip is the mean nonzero rain rate in a satellite footprint (subscript c for

"conditional"), p being the probability that a footprint contains nonzero rain. The ratio

T/S can be thought of as the average time interval between two consecutive full area

observations by the satellite. When the sampling is sparse, one has T/S >> 2_'a, and

in this limit C _ av/'6_c. When the effective sampling interval is comparable to %,

this simple cell model is no longer applicable, and one must employ a more accurate

representation of the statistical properties of the local rain field, an example of which

is described next.

A somewhat different explicit form of the constant C was derived by Bell et al.

(1990) using an approach originally due to Laughlin (1981). Assuming that the entire

area A is sampled at regular intervals At = T/S, they obtained the formula

a3 "_ (a2a/S)/(&t/e_a) , (2.9)
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where a_ is the variance of the instantaneous rain rate RA(_),

o_ = var[RA(_)], (2.1o)

TA is the corresponding correlation time [(l/e)- folding time of the autocorrelation of

RA(_), assumed to be pure exponential], and with

f(u) = eothu- 1/v. (2.11)

The approximation (2.9) assumes T >> VA, which is certainly valid when T is of the

order of 1 month, since rA is typically 4-10 h. The variance of the box-averaged rain

rate cri can, in turn, be expressed in the form

a2A = s 2 A2/A , (2.12)

where s 2 is the variance of the instantaneous rain rate averaged over a satellite

footprint. The quantity A 2 is the effective area of a rain fluctuation that can be

considered as statistically independent of other such fluctuations within the grid box

A, in analogy with the definition of an "effectively independent sample size" by Leith

(1973). It is given by
NoN0

h: = A 53 _EP(t×,- xjl), (2.13)
N2 i--1 j=l

where p(z) denotes the spatial correlation between rain in two footprints separated by

a distance z, No is the total number of footprints in A, and the average is performed

over all pairs of footprints. The length A can be thought of as the distance over which

footprint-averaged rain rate is correlat@d, or as the typical size of a coherent rain event.

Note that the value of A may in principle vary with both FOV size [which affects p(z)]

and the area A, which affects the range of separations [xi-xj[ encountered in the double

sum.

Combining equations (2.9) and (2.12), using the relations R = pro, and

s 2 = ps2c + p(1 - p)r 2 (2.14)

=;(s_+ r_) (2.12)
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(the latter valid whenp is small), one again obtains formula (2.6) for the sampling error,

with the identification

C = A[rc(1 + _)]l/2f(.at/2_A), (2.16)

where rc and s 2 are the mean and vim'iance of nonzero rain rate (i.e., conditional on

RFOV > 0), and #c ---" sc/rc. It should be pointed out that although the quantities

p, rc, so, and A may each depend strongly on the footprint size, our simple theory leads

to the expectation that expressions (2.8) or (2.16) determining the constant C are

insensitive to it. Short et al. (1993) have suggested that the ratio #c = sc/rc is relatively

constant over a range of footprint sizes, averaging times, types of data (rain-gange or

radar) and climates. In the limit of sparse sampling this would imply

C _ const x rJ2A, (2.17)

which should be compared to (2.8). Note that unless A is much larger than a typical

rain event, A s in (2.13) will depend non-trivially on A, and thereby change the A

dependence of rYE in (2.6). In fact, when A approaches the size of a single footprint, it

is easy to see from (2.13) that A 2 _ A.

3. Random error of monthly SSM/I rain rates

Rain estimates made from SSM/I observations provide a way of testing directly

the validity of the proposed simple theory of sampling error. Coverage by the SSM/I

as measured by S in (2.7) is quite close to that of TRMM's passive microwave sensor

(TIvII) for grid boxes at low latitudes, and so sampling errors should be similar in size,

though their respective retrieval errors may differ. In this section we shall investigate

the statistical behavior of the retrieved rain rates and the inferred statistics of random

errors in gridded monthly averages of retrievals.

-14-



a. The SSM/f dataset

The dataset we used consists of rain data from two satellites, the F10 and Fll, in

nearly sun-synchronous polar orbits around the earth. The data were taken during the

four-month SpeciM Observing Period (SOP) of TOGA COARE from November 1992 to

February 1993. Local visit times of the F10 and Fll during the SOP were roughly 9:30

am/pro and 5:30 am/pro respectively. The SSM/I on each satellite views a given spot

on the earth an average of about 30 times per month, so that S _ 30 in Eq. (2.6). (For

the TRMM microwave instrument, S _ 30 as well, but local visit times shift over the

course of a month.)

Rain rates were derived using the Goddard Profiling Algorithm, which is based

on the method described by Kummerow and Giglio (1994a,b), modified following the

description given by Kummerow et al. (1996). The dataset was generated as part of the

3rd Algorithm Intercomparison Project (AIP-3), as described by Ebert et al. (1996),

and in more detail by Ebert and Manton (1998). Rain rates are estimated for footprints

which may be thought of as circles approximately 28 km in diameter, even though in

reality they are elliptical in shape, the response of the microwave antenna is nonuniform

over the FOV, and there is blurring due to the finite integration time of the SSM/I

instruments. Kummerow and Giglio (1994b) provide a more detailed discussion of

this topic. The retrieved rain rates are provided as successive arcs each containing 64

partially overlapping footprints and covering altogether a swath about 1400 km wide.

We studythe statistics of rain in the region extending from 10 ° S to 10 ° N and

from 135 ° E to 175 ° E in the tropical western Pacific. This region includes the area

where the TOGA COARE Intensive Flux Array (IFA) was located. For an optimal

choice of the grid-box size for our statistical analysis one needs to strike a compromise

among several competing factors. The box needs to be large enough so that rain rates

in neighboring boxes can be assumed to be statistically uncorrelated. This is essential

for treating collections of grid-box averages as sets of statistically independent samples,.
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so that standard statistical methods of estimating confidenceintervals for the averages

can be used. On the other hand one would like the boxesto besmall so that there

areas many boxesas possible,thereby giving us a more detailed, smoother picture of

the dependenceof the retrieval statistics on local rain rate, aswill be clear in the next

section. A small box sizealso increasesthe likelihood that rain statistics within the

box can be regardedas approximately homogenous.With thesefactors in mind we have

chosena grid-box size A = 2.5 ° x 2.5 °.

b. Estimate of the random error in grid-box averages

The SSM/I dataset itself does not provide access to the true monthly average

rain rate R appearing in the definition of O'E in Eq. (2.5). To circumvent this difficulty,

we use a procedure suggested by Chang et al. (1993) to estimate the rms random error

aE for either satellite. Consider the mean squared difference between the F10 and Fll

estimates of a grid-box monthly average:

-  11)2)= - .if) - - .if)j2>

(3.1)

The approximation above would be legitimate if the observations by the two

satellites are far enough apart in time to be nearly tmcorrelated. Although the legiti-

macy of this assumption may be surprising, since the satellites can in principle view the

same scene only 4-5 hours apart, several factors appear to justify the approximation.

Each satellite visits a grid box only once per day on average, and the visits of one satel-

lite are generally well separated from the other's. Moreover, some simple calculations

based on Laughlin's (1981) approach show that, for two satellites with idealized sam-

pling like that of the F10 and Fll, expression (3.1) is quite accurate, even though the

two averages/_i0 and/_u are not in fact statistically independent. It should be noted,

however, that the same calculation indicates that the approximation (3.1) is not so good
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if the satellites were to haveclosersampling times or, moresurprisingly, respectivevisit

times nearer to 12hours apart. Finally, this approximation wascorroborated by per-

forming sampling error calculations using the method developedin BK96 and the exact

sampling patterns of the F10 and Fll satellites, and the approximation (3.1) is borne

out at the level of 5% accuracy.

The error variance a} as estimated in (3.1) includes both the sampling error

described in section 2 and also any contributions from randomly varying retrieval errors

in the two satellites' estimates. As discussed in the previous section, if random retrieval

errors are uncorrelated from footprint to footprint, the contribution to a 2 from these

errors should be quite small, and the sampling-error component would dominate the

estimate of a_ based on (3.1). If, however, retrieval errors are correlated spatially or

from one satellite viewing to the next, a 2 may contain significant contributions from

retrieval error. For any of the purposes reviewed in the introduction, though, the error

aj} introduced there is more properly given by a} rather than the sampling error for

perfectly measured rain rates. The fact that the estimate cr2 includes retrieval error

as well as sampling error is therefore an advantage rather than a disadvantage to an

approach using (3.1).

Systematic differences in the rain retrievals by the two satellites, if present, could

also contribute to the estimates of a 2 made with (3.1). Such differences might be due to

instrumental biases or operational differences between the two systems, or to significant

diurnal variation .m the rain statistics for the grid box. The diurnal variation would,

however, have to be more complex than a simple first-harmonic sinusoid in order to

contribute in this way, since each satellite views grid boxes at two times of the day,

twelve hours apart, on average. Differences in the F10 and Fll averages due to diurnal

effects seem unlikely to be very large for grid boxes over oceanic regions, but could be

appreciable for boxes containing significant amounts of land.
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c. Statistical analysis of the data

Monthly averages of retrieved rain were obtained for each 2.5 ° × 2.5 ° grid box

in the TOGA COARE SOP dataset described above, yielding a total of 512 samples

(128 grid boxes, 4 months of data). Grid-box results were also segregated according

to whether the grid boxes contain mostly land, mostly ocean, or a mixture, but the

differences in the statistics for these subsets were, for the most part, difficult to discern.

They wilI be discussed later.

The coverage provided by the two satellites can vary from grid box to grid box

and month to month. To gauge this, let us define $10 and $11 as the effective numbers

of full viewings of a grid box by the F10 and Fll, respectively, as measured by (2.7). To

compute $10 and Sll, a method is needed for estimating the areal fraction Ai/A for each

satellite visit i.

(i) Estimation of Slo andS11.

If the number of footprints required to cover the entire area A is known, the ratio

of the actual number of footprints in A to the full-coverage number provides an estimate

of the fraction Ai/A for that particular visit. A possible method of determining the full-

coverage footprint number is to examine the distribution of the number of footprints

observed in many overflights of a grid box. Since the SSM/I swath is wide compared to

the grid-box size, we would expect a histogram of the number of footprints observed in

a box to peak at the maximum possible number. In reality, such histograms are not so

simply behaved. This is in part because the density of footprints varies with location

in the instrument swath, being largest near the swath's edges. Sporadic data loss due

to instrumental and algorithmic problems can also occur. As a result, the histogram of

footprint counts displays a somewhat broadened peak at the largest footprint counts.

Although a more exact method of determining the fractions Ai/A could certainly be

devised, it is sufficient for our purposes to define the full-coverage footprint count as the
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number of counts Nm_, where the histogram peaks. We estimate the fraction Ai/A for

a given visit to a grid box to be the ratio of the actual footprint count to Nm_,. This

estimate can sometimes be greater or less than 1 even though the swath completely

covers the grid box, but the monthly sums $10 and Sm that result from this choice

1

are reasonably good approximations to the values that would be obtained from more

geometric estimates, and in addition take account of occasional data dropouts. For

the SSM/I dataset we found Nm_ _ 120. Values of $10 and Sm computed this way

for the 512 cases ranged between 15 and 34, with a mean value of about 28, indicating

considerable variations in the satellite sampling. (It should be noted that the number of

days available in the months also varies.)

(ii) Removing effects of variable coverage.

Since our chief concern here is with how well (2.6) predicts the dependence of

0"E on local rain rate, it would be preferable if we could minimize the effects on our

analysis of the varying coverage by the satellites. Arguments very similar to those used

in deriving (2.6) predict

((RI°-Rll)2)=C2RA(_+S-_m '1 ) (3.2)

where $10 and Sm are the effective numbers of full viewings of a grid box by the F10

and Fll, respectively, as measured by (2.7). By defining a "mean" coverage S for the

two satellites by
.- .

2/S = 1/Slo + 1/Sll , (3.3)

we can recast Eq. (3.2) in a form identical to Eq. (2.6) even if the relative coverage

by the two satellites varies. As in Eq. (2.6), the coefficient C in (3.2) may depend

on local rain statistics in ways suggested by Eqs. (2.8) or (2.16), but it should be

relatively insensitive to changes in coverages $10 or $11. (It should be noted that the

rain statistics determining C are now those of the "measured" rain, including the effects

of randomly varying retrieval error.)
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Consider the result of multiplying Eq. (3.2) by S/2,

S((/_10 -/_11)2)/2 = C2R/A. (3.4)

The ensemble average (.) here indicates an average over many different sequences of rain

events all having the same monthly,mean R and observed by the two satellites. Since

changes in S have relatively little effect on the right-hand side of (3.4), the left-hand

side will be insensitive to changes in S as well. This allows us to obtain estimates of the

right-hand side of Eq. (3.4) from averages of data with differing values of S, so that we

can write

C2R/A = (S(/_10 -/_11)2)/2 • (3.5)

where now the angular brackets are meant to indicate an average over an ensemble

of months with varying rain sequences with monthly average R and varying satellite

sampling as measured by S.

(iii) Dependence of RMS error on R.

Guided by Eq. (3.5), then, we investigate the dependence of a_ on rain rate by

first computing the mean rain rate

= (-_10 +/_11)/2 (3.6)

for each of the 512 grid boxes and months. The 512 pairs of estimates from the F10

and Fll are sorted into 8 bins in order of increasing values of/_/, with 64 samples to

a bin. For each bin, an average over the 64 values of S(R10 - Rll)2/2 gives us an

estimate of C2R/A, using (3.5), at the mean R for that bin. The binning process

destroys information regarding the geographical location of a particular box and the

observation month--samples containing similar monthly averaged rain rates are lumped

together regardless of their location or time of observation. Although rain statistics no

doubt change as various factors affecting the formation and development of precipitating

systems within each grid box change, the operating assumption is the same as that of
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the simple model: that if tile frequencywith which rain eventsoccur in a grid box is

known, all other rain statistics at that location can be predicted reasonablywell.

It wasmentioned in section 2 that sampling errors for monthly averagedTRMM

TMI data have beenestimated with simulations using ground-basedmeasurementsin a

variety of rain environments. Near the equator the TMI and a DMSP satellite carrying

SSM/I provide almost identical coverage,as measuredby S, if both instruments are

providing rain estimates from the entire instrument swaths during the month. With

perfect coverage, S _ 30 for both satellites. In order to compare our SSM/I results to

these earlier TRMM studies, Eq. (2.6) and our estimates of C2R/A from (3.5) can be

used to compute what the random error aE in monthly averages of SSM/I data would

be for the same coverage So = 30 assumed in the TRMM studies, via

= F
&ii)2>/2

1/2

(3.7)

Figure 1 shows a plot of aE/.R estimated for a single SSM/I providing maximum

possible coverage during a month (i.e., assuming an average of 30 visits per month).

Results are plotted versus the average R for each bin. Error bars are 95% confidence

limits obtained under the assumption that differences in monthly means behave

statistically like independent, normally distributed variables.

Also shown in Fig. 1 are sampling-error estimates based on two radar datasets

collected from ships stationed over open ocean. The two estimates labeled "GATE"

use the statistics of data taken over the eastern tropical Atlantic during Phases I and

II of the Global-Atmospheric-Research-Program Atlantic Tropical Experiment (GATE)

in 1974. The six estimates labeled "TOGA COARE" use the statistics of radar data

from two ships during the three cruises of the SOP. The methods used in obtaining

these estimates are described fully in BK00. Comparison of the SSM/I estimates with

the TOGA COARE estimates is particularly appropriate because the data were taken

during the same four months, although the radar data cover only a limited region

around 2°S, 156°E.
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Figure 1. Relative sampling error of monthly grid-box averages over the equatorial

western Pacific as a function of mean local rain rate R. SSM/I estimates have been
corrected .for missing data. A power-law fit is shoum. Estimates using surface radar

• data assume coverage identical to what is provided 5y the TRMM microwave instrument,

averaging 30 visits per month, very close to the SSM/I sampling. GATE radar data were
taken during 1974. TOGA COARE radar data were taken contemporaneously with the
SSM/I data.

Figure 1 brings out two salient characteristics of the SSM/I error estimates: 1)

Estimated errors in SSM/I averages, which may include random retrieval errors, are

30% or more of monthly mean rain rates, and considerably larger than previous error

estimates based on surface radar data, which are nominally estimates of sampling error

alone (but couldinclude the effects of errors in the radar-derived rain rates); and 2)

even though both the simple model and experience- (th0ugh admittedly nmited) with

ground-based data suggest that aE/R might be described by a power law with exponent

-1/2, the SSM/I errors are better described by a power law with an exponent of about

-0.3.

It should be noted that a number of sampling error estimates have been made

with ground-based data other than those shown in Fig. 1. They are reviewed by BK00.
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Two extensivestudies, by Oki and Sumi (1994) and by Steiner (1996), yielded sampling-

error estimates that are comparable in magnitude to the SSM/I values in Fig. 1, except

at the highest rain rates, where the SSM/I estimatesare larger. Becausethesestudies

used data from southern coastal Japan and from Darwin, on the northern coastof

Australia, however, it is not clear that comparisonwith the SSM/I results is appropriate

here. Rain in tropical coastal areasis quite different in characterfrom rain over the

open ocean. The SSM/I statistics we usedare largely determined by rain overoceanic

areas. The TOGA COARE radar statistics shownin Fig. 1 are from an area and time

period included in the SSM/I dataset, and sowould be most nearly comparable.

It is interesting to note that Changet al. (1993) alsoobtained rms error asa

function of the mean rain rate on a 5° × 5° grid, using global oceanicmonthly estimates

of rainfall obtained with their microwaveemission-basedalgorithm. If their results are

convertedto the format usedhere, they can be fitted to aE/R _ 0.26 R -0"26 (R in

mm h-l). The relative errors they found are roughly 50% higher than the corresponding

errors for 5 _ >< 5 ° boxes we found (not shoWn) _ing the SSM/I dataset studied here.

_Ve conjecture that, because the grid boxes in Chang et al.'s (1993) study were all 5 ° ×

5 ° regardless of location, boxes at higher latitudes that contributed to their statistics

had smaller physical areas, and Eq. (2.6) predicts that they would have higher rms

errors than for boxes near the equator. Thus, the higher errors of extra-tropical grid

boxes may have been averaged with the errors for tropical grid boxes and resulted in an
v .

overall increase in average error, whereas our analysis covers only equatorial areas.

Figure 1 has shown that, where they can be compared, the statistics of the

microwave-retrieved rain rates clearly differ in important ways from the statistics

of surface radar data. In the sections that follow we shall try to identify where the

differences occur, propose some useful diagnostics for these differences, and suggest how

Eq. (2.6) might be modified to take them into account.
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4. Exploration of ground-radar-SSM/I differences

The assumptions of the simple model in section 2 lead to predictions for sampling

error like Eq. (2.9), where mean squared error is the product of the variance of area-

averaged rain rate, a_, and a factor f(At/2TA)/S determined by the temporal sampling

pattern of the satellite and by the correlation time 7A of area-averaged rain rate. We

can rewrite it somewhat schematically as

a_ ,,_ ty2Af(T/2vAS)/S . (4.1)

In reality, when satellite visits are not evenly spaced and the area A is not viewed in its

entirety on each visit, the dependence of f/S on a satellite's sampling pattern is more

complicated than the simple dependence on S in (4.1) suggests. Based on an earlier

study (BK96) with TRMM sampling, however, Eq. (4.1) seems to capture much of the

change in sampling error with satellite sampling.

As we shall see later, the correlation times of SSM/I-retrieved rain rates tend

to be similar in size to the correlation times seen in radar data and small compared to

the typical time interval between SSM/I visits. We therefore conclude that the factor f

cannot explain the differences in sampling errors in Fig. 1. Most of the difference seems

to be due to differences in variability of area-averaged rain rate as reported by satellite

and ground-based systems, and we turn now to investigating the differences in a_ for

the two.
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Figure 2. Ratio of the variance of instantaneous area-averaged rain rate RA(t) to R,

A = 2.5 _ x 2.5 _, computed following the procedures used for Fig. 1. The simple model

predicts that this quantity should be insensitive to local rain rate. Error bars (95_o conf.)

are shown only for GATE, but others would have similar errors. A power-law fit to the
SSM/I points is shown. Corresponding statistics derived from TRMM TMI data are also

plotted, and are discussed in Sec. 6.

By combining Eqs. (2.6) and (2.9) it is easy to show that the simple model

predicts that a_ should increase linearly with R, so that the ratio a2A/R should remain

constant with changing local rain rates. Fig. 2 shows this quantity plotted as a function

of R using the same binning procedure as in Fig. 1. In order to improve the legibility

of the figure, only error bars (95% confidence intervals) for the ratio computed from

GATE radar data are shown. They are representative of the estimated errors in the

other plotted quantities. (Also shown are corresponding values obtained from TI_IM

TMI retrievals. These will be discussed later.) Given the level of uncertainty, it could

be argued that the surface radar statistics are consistent with the constancy with

R predicted by the simple model, though synoptic conditions at the two radar sites

are sufficiently different that some underlying changes in the statistics may also be

occurring. Whether or not this is so, it is evident from Fig. 2 that variances in SSM/I
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area averagesaresig-nificantlylarger than for the sameaveragesobtained with surface

radar, and they also appear to increasefaster with R than the surface data.

150

125

_100

5O
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R (mmh -1)

Figure 3. The scale of "statistically independent rain events," for SSM/I data in _. 5°

× _,.50 grid boxes, from Eq. (2.13). If spatial correlations decreased exponentially as
exp(-z/A) with separation z and the dimensions of A are large compared to _, then

A = A/_, _qeeappendix for details. :

Equation (2.12) indicates that a_ is determined by the variance of the individual

SSM/I "point" estimates of rain rate (i.e., 8 2 for FOV estimates) and by A 2, the area

of statistically independent rain events. Figure 3 shows the dependence of A on R,

calculated using Eq. (2.13). The calculation of A had to be adapted to handle the

actual spatial distribution of SSM/I footprints, and is described in the appendix. In

this and the plots that follow, the statistics for each value of R are averages over 64

grid-box/months with monthly means in the neighborhood of R, just as in Figs. 1 and

2. SSM/I estimates for regions with monthly rain rates similar to those observed by

the surface radar in TOGA COARE, R _. 0.2 mm h -z, yield values of A _ 100

km (corresponding to a "correlation distance" of about 40 km---see appendix). If the

TOGA COARE radar data are smoothed to a spatial resolution corresponding to the
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scaleof the SSM/I footprint area,about v_(28/2) _ 25km, and usedto calculate A, a

value of A very close to the SSM/I value is obtained. It is therefore the larger valuesof

s 2 for the SSM/I rather than differences in A that are mostly responsible for the larger

values of a_ seen in Fig. 2.

6

0
0

.... I .... ! .... I .... I .... t .... t ....

.... I .... I .... ! .... I .... I .... | ....

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R (mm h")

Figure ,_. Mean rc and standard deviation Sc of SSM/I rain rates in FO Vs with nonzero

rain, and the ratio #c = so/re.

Equation (2.15) relates values of s 2 to the average areal coverage by rain, p, and

the mean and variance of nonzero rain rates, rc and s_. Figure 4 shows the conditional

mean rc = Rip and standard deviation Sc of nonzero rain seen by SSM/I, and also

the ratio #c = so/re, as a function of R. The statistics are comparable in size to

those reported for GATE data by Short et al. (1993), especially/_c. The ratio #c is

nearly constant, a phenomenon also noted by Short et al. (1993) in other rain data.

There are, however, subtle threshold-dependent effects in the conditional statistics

that make intercomparison of the radar and SSM/I statistics problematic. The radar

is able to detect much smaller rain rates than the SSM/I. When values of re, so, and

#c are calculated from surface TOGA COARE radar data smoothed to a spatial

resolution corresponding to the scale of an SSM/I FOV [_ (25 km)2], we find values
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rc = 0.5 mm h -1, s¢ = 1.4 mm h -l, and #c = 2.7 =t=0.3. They are quite different from

the satellite values. For example, we see in Fig. 4 that for the SSM/I data #c ranges

between 1.21 and 1.44. The difference in the values of #c obtained by us from TOGA

COARE radar data and the values obtained from SSM/I data and in the analyses of

surface data by others suggests that pc may depend on the threshold of detectability of

rain in a way that was fortuitously absent in other studies.

08 ,: :

_ _, _ _,..._
0"6[-/ _ ', ....... _.,,._ -

0 6 12 18 24 30 36

•_ (hours)

Figure 5. Autocorrelation of SSM/I rain rate averaged over 2. 5_ × 2. 5° grid boxes for
various categories of monthly rain rate R. Correlations are shown only when more than

about ,_00 pairs of observations are available at d given separation r. Curves through
data points are smoothed interpolations.

In order to study temporal correlations of area-averaged SSM/I rain estimates, a

time series of the average rain rate for full-area observations at each grid-box location

was obtained. All visits with greater than about 85% coverage, determined from

the footprint counts as explained in section 3.c.i, were included to get a time series

that is sufficiently dense. Because the visit times of the F10 and Fll sometimes

differed by as little as 3 h, these series had sufficient time resolution for useful time

correlations to be obtained. Figure 5 shows the lagged autocorrelations of RA(t) sorted

into the same 8 climatological rain-rate bins used in the previous figures; that is,
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autocorrelations for a given R represent the statistics of 64 time series with monthly

means in the neighborhood of R. For each of the 8 rain-rate categories we fitted the

lagged autocorrelation function of the area-averaged rain rate to a simple exponential

form exp(-]t - t'[/VA). The correlation times rA were found to be about 6 hours and

nearly independent of R, except at ihe lowest and highest rain rates. Spectral analysis

of the time series indicated enhanced spectral power at frequencies corresponding

to periods of 2-5 days and 40-50 days. The former may possibly be related to the

convective disturbances with that time scale discussed by Takayabu and Nitta. (1993),

while the latter may be related to the Madden-Julian oscillation (Madden and Julian

1972; Chen and Yanai 2000).

It is well known that the statistical behavior of rainfall differs over land and

ocean. To investigate this quantitatively, we employed a land/ocean mask at 2.5 ° spatial

resolution. Of the 128 grid boxes in the chosen area, 97 are categorized as covered

by ocean, 23 as mostly covered by land--largely concentrated around New Guinea

in the southwest quadrant of the area we studied--and 8 as containing substantial

amounts of both. The statistics of land-containing grid boxes were sorted into only 4

bins with increasing rain rates R in order to have a reasonable number of samples in

each bin. Monthly rain rates in the land-containing boxes tended to range over values

less than half as large as for the ocean-covered boxes. Most land--ocean differences in

the statistics were indistinguishable from variability caused by small-sample effects. The

conditional mearisrc, however, were 50% to 75% larger over land, unlike the values of

so, which were, perhaps surprisingly, a little smaller. The ratio #c ranged from 1.43

to 1.56 over ocean and from 0.85 to 1.0 over land. A pronounced peak in spectral

power was found in the time spectrum of rain over land-covered boxes at a frequency

of 1 day-1, indicating the presence of a strong diurnal cycle. No spectral peak was

evident in oceanic rain rates at that frequency. There is also little sign of any enhanced

autocorrelation at 7- = 24 h in Fig. 5, except perhaps for grid boxes with the smallest
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rain rates, indicating that statistics tendedto be dominated by the statistics of the

oceanicgrid boxes.

5. Power-law descriptions of SSM/I statistics

The statistics of the SSM/I retrieved rain rates are described quite well by simple

power-law dependences on R, as can be seen from the power-law fits shown in Figs. 1-4.

Since this provides a much more concise description of the statistics, we present these

results here.

It is convenient to express the various statistical quantities as powers of the

dimensionless quantity p rather than R. We introduce the three basic exponents a,

and 7 through the relations

rc=r0p_, 8_= 80_t,A_= A_p_. (5.1)

Note that in the simple model all the exponents would vanish. From the definition

R -- pro it follows that

R = r0p l+a, (5.2)

and if we treat the ratio #c as approximately constant, Eq. (2.15) gives

_ _ (_02+r0_)p1+_. (5.3)

(Strict constancy of #c would imply j3 = 2a.)

The expression (2.12) for a 2 implies the power-law relation

2 2 l+fl+7a2A = (s 2 + ro)(Ao/A)p . (5.4)

Because p and R are related by (5.2), 'the exponents a, _3, and 7 can be derived from

the exponents obtained with error-weighted least-squares power-law fits to the statistics

in Figs. 2-4. We find that the SSM/I statistics can be reasonably well explained by the

values

c_ = 0.17, /_ = 0.53, 7 = 0.53. (5.5)
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The coefficientsof the power-lawfits in Eqs. (5.1) were found to be

r0 = 4.5 mm h -1, so = 7.6 mm h -1, A0 = 220 km. (5.6)

Although not shown here, it was found that the right-hand side of Eq. (3.5) is

proportional to a_ to reasonably good accuracy; that is, the dependence of c_E on R is

mostly determined by the R-dependence of aA, as predicted in (4.1). Their relationship

is described empirically by

a_; = 0.66 a2A/S . (5.7)

it is interesting to compare the empirical coefficient in (5.7) with what would be

estimated from Eqs. (2.9) and (2.11). If we use the correlation time rA = 6h found

in section 4 for most rain rates R, and the mean monthly areal coverage S = 28, we

calculate f(T/2rAS) = 0.56. Given the crude nature of the estimate, which assumes

exponential autocorrelation of RA(t) and equally spaced observations in time by the

satellite, the extent of agreement with the observed value 0.66 is remarkable.

If the relatively small effects on sampling error crE due to changes in rA with R

are neglected, Eq. (4.1) implies

_ ocpl+_+_. (5.8)

The relative sampling error for a single SSM/! satellite shown in Fig. 1, when fitted to a

power law in R,

¢rE/R oc R 6 , (5.9)

gives an exponent 5 = -0.30 (instead of-0.5 predicted by the simple model). The

power laws (5.1) would predict 5 = -1/2 + (ft + 7 - a)/2(1 + a), or 5 = -0.12

when the exponents in (5.5) are substituted. The discrepancy in the exponent obtained

by directly fitting aE/R to a power law and the exponent predicted using the other

empirical exponents appears to be due to the changes in the correlation time of RA (t) at

the smallest and largest rain rates R seen in Fig. 5. The resulting changes in the factor

-31-



f in (4.1) are equivalent to an increase in the predicted value of 5 from -0.12 to a value

near -0.3.

6. Some Preliminary TRMM Results

The analysis so far described was motivated in part by the need to supply a

measure of the random error for gridded monthly rain-rate products produced by

TRMM. From a rainfall-retrieval-algorithm point of view, the TRMM's TMI has an

advantage over the SSM/I because the TI%'vIM satellite orbits closer to the earth, giving

the instruments improved spatial resolution, and the TMI includes a lower-frequency

dual-polarization 10.7-GHz channel in addition to SSM/I's four higher-frequency

channels. Althoughthe random error in TRMM monthly rain elimatologies will be more

thoroughly explored in a subsequent paper, it is interesting to compare the performance

of TRMM to what has been learned about SSM/I here.

a. TRMM Data

We used TMI surface rainfall retrievals made available by the Goddard Space

Flight Center (GSFC) Distributed Active Archive Center (DAAC) as official TRMM

product 2A12, version 4, for the four-month period January-April 1998 over the same

geographical area as the one used in the SSM/I study here. The TMI rain product has

benefited not only from the instrumental advantages mentioned above, but also from the

use of a version of the algorithm more advanced than the one used with the SSM/I data.

The most important change in the algorithm is probably the addition of a step which

adjusts for the relative amounts of convective and stratiform rain present in each FOV,

as described by Hong et al. (1999).

b. Data Analysis Results

The dependence of the statistics of TMI rain-rate data on local rain rate R was

determined in the same manner as before, by binning the statistics for each 2.5 ° x 2.5 °

grid box and month according to the monthly mean R. A plot of a2A/R for TP_MM
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is shown in Fig. 2. The number of bins was increasedto 16whenit becameapparent

that the statistics changein characteraboveand below R ,,_ 0.1 mm h -1, so that each

point represents an average of 32 rather than 64 grid-box results. It is encouraging to

see that the TRiM statistic has moved closer to the radar values. The improvement is

especially marked at the higher rain rates, where the ratio is both more nearly constant

with R and considerably lower than the SSM/I results.

Rather good fits of the TRMM results to power laws in R can be obtained if

a fairly sharp crossover of the exponent values for rain rates above and below R =

0.1 mm h -1 is allowed. The parameters of the fits in both regimes are given in Table

1. The parameters for the conditional rain statistics for TRMM are very different from

those of the SSM/I statistics given in (5.5) and (5.6).

7'. Summary and Conclusions

SSM/I rin-rate data taken during the TOGA COARE experiment were used

to estimate the random error in monthly averages over 2.5 ° grid boxes in the western

tropical Pacific. The satellite algorithm that was used is a predecessor of the one

currently used to process TRMM microwave data. The error estimates were made

two different ways: one estimate was obtained from the rms differences of the monthly

averaged rain rates given by the F10 and Fll satellites; a second estimate was obtained

from the variance, a 2, of instantaneous area-averaged rain rates RA(t), and a rough

estimate of the temporal correlations of RA (t). The two estimates agreed quite well.

This suggests that reasonable estimates of random error in gridded monthly averages

might be made from a_ and an approximate characterization of the time correlations

of RA(t)---quantities that can be obtained from the satellite data themselves. Such

estimates will include the contributions of random retrieval errors to the total error.

Over the ocean, both the magnitude of a2A/R and its dependence on locl rain

rate R are clearly different for the SSM/I rain estimates and surface radar estimates.

The higher variance of SSM/I estimates of RA(t) compared to radar appears to be due
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mostly to the larger varianceof individual footprint estimates,measuredby s 2, rather

than greater spatial correlations of the rain data--to the extent they are measured by

A. It will be shown in a separate paper that the SSM/I estimates are highly correlated

with stratiform rain as identified in the TOGA COARE surface radar data, and not

so well correlated with rain identified as convective; the SSM/I rain estimates where

there is stratiform rain are much larger than the corresponding radar estimates, whereas

rain estimates where the radar reports convective rain tend to be estimated smaller by

SSM/I. The net effect is to make s 2 large for SSM/i FOV estimates. These conclusions

apply, of course, only to the rain data generated by the particular algorithm used to

produce the dataset investigated here.

Little has be@n said here about how samphng error depends on the grid-box "

area A. As was seen in Eq. (2.6), the simple model would predict a,¢, o¢ A -1/2.

Equations (2.9) and (2.12), however, indicate that this is only true if the area A is much

larger than A 2. The 2.5 ° x 2.5 ° boxes studied here are not quite large enough in this

respect. Although increasing the box size to 5 ° x 5 ° reduces the number of samples

per bin when the statistics are binned by rain rate R, as was done in section 3, such

an experiment shows that the power-law dependence of a2A on R is almost the same for

the two box sizes, but that the dependence of a_ on A is consistent with o"A (X A -0"33

rather than with A -1/2. Thus, increasing the box size from 2.5 ° to 5° does not decrease

sampling error as much as the simple model would have predicted if A were larger.

Based on our results, it is recommended that future algorithm intercomparison

projects include comparisons of a2A/R for grid-box sizes of the order of 2.5 ° or larger, in

addition to comparing the mean rain rates R themselves. The ratio is easy to calculate

and, as has been shown here, can serve to bring out some aspects of the algorithms

that can be missed in point-by-point comparisons but are important for climatological

use of the data. This quantity has the advantage that, other things being equal, it is

not so sensitive to instrument resolution, and so makes intercomparison of different
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measurementsystemsconceptually easier. The quantity cr_can reveal the presenceof

correlated retrieval errors in the satellite product, a possiblebyproduct of the reason

for its being larger in the SSM/I data than in the radar data, as will be discussedin a

subsequentpaper.
!

An especially important result is that the quantity a_ can be used to estimate

the accuracy of monthly averages of rain data via a relation like Eq. (5.7). Such an

estimate avoids some of the assumptions used in parameterizing error in terms of

average rain rate R, though it requires that the satellite dataset supply values of crA as

well as R for each grid box.

Whether because of better resolution and additional channels in the TMI or

because of improvements in algorithms, the statistics of TRMM TMI (version 4) rain

estimates from the western tropical Pacific appear to be significantly closer to oceanic

surface radar statistics than the SSM/I statistics. An improved TMI algorithm is now

being used to process TMI data, and we expect even better agreement with ground-

based data. This will be examined in a future paper.
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APPENDIX

Computation of the Length Scale A

In this appendix we discuss in more detail the computation and interpretation

of A 2 defined in Eq. (2.13). It is helpful in developing an interpretation of A to assume

that the footprints are sufficiently densely and evenly distributed that they can be
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treated asif arranged in a regular rectangular array completely filling the area A = L 2.

Each footprint occupies a box of side d = L/N. The number of footprints is then

No = N 2. The quantity A so defined in general depends both on the area size L and

the footprint size d. For instance, if the area is small enough to be covered by a single

footprint, then obviously A = L. More generally, however, A is closely related to the

scale over which the data axe spatially correlated, as we now show.

Using the identity

N N

_ _-_ f(i - j) =
i=l j=l

N

(N- Iml)f(m) (A1)
rn=-N

for a function f(i) defined at each integer i, [i[ < N- 1, we can write (2.13) as

A2 A ,j_ Y= p(Ix j - xk l)
1 k,/=l

A N N

= _ _ _ (Y-[mll)(N-[m2[)p(lm[d)
ml=-N m2=-N

(A.2)

This formally transforms the sum over the correlation between all pairs of footprints in

the N x N array into a weighted sum of the correlation between each footprint in an

equally spaced (2N + 1) x (2N + 1) array and a footprint located at the center of the

array. If p([m[d) is sufficiently smooth, Eq. (A.2) can be treated as a discrete numerical

approximation to a continuous double integral. The approximation becomes exact in the

limit d _ 0 ("point footprint"). Introducing the separation vector s = rod, and using

the relations A = L 2 and L = Nd we can express A 2 in this limit as an area integral

over a 2L x 2L square:

A2 ._ ____1 fLLdsl fLL- ds2(L- ,Sl,)(L- ]s2,)p(,s,)

By going to polar coordinates this can be reduced further to the one-dimensional

integral

A 2 = 4 [v_L
Jo sg(s)p(s)d8 (A3)
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with the angular integral replacedby the areal weighting factor

=/_,(s) d_(1_ s cos_)(1- sg(s) #o(,) Z Z sin )'

where

and

• {0, s<_L;_o(s) = cos-l(L/s), s > L;

 l(s) = - .

Carrying out the integrations in (A4) we get

(A4)

lr/2 - 2s/L + s2/(2L2), 0 < s < L;g(s) = 1r/2 - 1 - 2cos-l(L/s) + 2x/(s2/L 2- 1) - s2/(2L2), L < s < v/'2L .

When the footprints are small compared with spatial correlation lengths and the

grid-box size A is large, one can easily show that

A 2 -. 21rL2nt , (A5)

where

/?Lint = sp(s)ds (A6)

is an "integral correlation length" which is just the usual correlation length, the (1/e)-

folding distance, if the correlation p(s) decreases exponentially.

Although the continuous integral representation of A 2 given by Eq. (A3) in the
. °

limit of infinite resolution is conceptually illuminating, estimation of the integral from

the finite resolution data in practice takes one back to a discrete sum. We estimated

A 2 for each 2.5 ° grid-box area as follows: The footprint pairs are binned according to

their mutual distance of separation in units of d/2 where d is the nominal diameter of

an SSM/I footprint (about 28 kin). For all the pairs belonging to the k-th separation

bin (k - 0, 1,2,... ,kmax = [2v_L/a_, where Ix] denotes the integer part of x) we

compute the correlation coefficient Pk, the mean separation 3k and the angular factor
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gk = g(kd/2). In terms of these quantities a reasonably accurate estimate of A 2 is given

by the Riemann-sum approximation

4 _(Pk+l_k+lgk+l -- Pk_kgk)(rJk+l -- 3k).
k=0

This method of proceeding does not require the assumption that the footprints be

uniformly distributed in the area A that was used to develop the interpretatisn (A3) for

A. We have tested the accuracy of the approximation by plotting s2A2/A against a_.

Our results are closely fitted by a straight line with unit slope.
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Figure Captions

FIG. 1. Relative sampling error of monthly grid-box averagesover the equatorial

westernPacific asa function of mean local rain rate R. SSM/I estimates have been

corrected for missing data. A power-law fit is shown. Estimates using surface radar data

assume coverage identical to what is provided by the TP_IM microwave instrument,

averaging 30 visits per month, very close to the SSM/I sampling. GATE radar data

were taken during 1974. TOGA COARE radar data were taken contemporaneously with

the SSM/I data.

FIG. 2. Ratio of the variance of instantaneous area-averaged rain rate RA(t) to R, A

= 2.5 ° × 2.5 °, computed following the procedures used for Fig. 1. The simple model

predicts that this quantity should be insensitive to local rain rate. Error bars (95%

conf.) are shown only for GATE, but others would have similar errors. A power-law fit

to the SSM/I points is shown. Corresponding statistics derived from TRMM TMI data

are also plotted, and will be discussed in Sec. 6.

FIG. 3. The scale of "statistically independent rain events," for SSM/I data in 2.5 °

x 2.5 ° grid boxes, from Eq. (2.13). If spatial correlations decreased exponentially as

exp(-z/)_) with separation z and the dimensions of A are large compared to A, then

= A/v/_. See appendix for details.

FIG. 4. Mean rc and standard deviation Sc of SSM/I rain rates in FOVs with nonzero

rain, and the ratio #c = so�re.

FIG. 5. Autocorrelation of SSM/I rain rate averaged over 2.5 ° x 2.5 ° grid boxes for

various categories of monthly rain rate R. Correlations are shown only when more than

about 400 pairs of observations are available at a given separation v. Curves through

data points are smoothed interpolations.
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Tables

TABLE 1. Power-law dependenceof rc, so, and A on p, defined in Eq. (5.1), and

power-law dependence of aE/R on R defined in Eq. (5.9), for TRMM TMI statistics

over the western tropical Pacific. As can be seen in Fig. 2, fits to the data must be

obtained separately for small and large R.

a /_ "7 6 ro (mm h -1) so (ram h -1) A0 (lan)

R <_ 0.1 mm h -1 1.02 3.40 0.46 0.03 24.6 379 175

R _> 0.1 mm h -1 1.44 0.90 0.44 -0.34 104 14 165
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